引言:
随着数据量和数据复杂性的不断增加,越来越多的企业开始使用OLAP(联机分析处理)引擎来处理大规模数据并提供即时分析结果。在选择OLAP引擎时,性能是一个非常重要的因素。因此,本文将使用TPC-DS基准测试的99个查询语句来对比开源的ClickHouse、Doris、Presto以及ByConity这4个OLAP引擎的性能表现,以便为企业选择合适的OLAP引擎提供参考。
TPC-DS基准测试简介
TPC-DS(Transaction Processing Performance Council Decision Support Benchmark)是一个面向决策支持系统(Decision Support System,简称DSS)的基准测试,该工具是由TPC组织开发,它模拟了多维分析和决策支持场景,并提供了99个查询语句,用于评估数据库系统在复杂的多维分析场景下的性能。每个查询都设计用于模拟复杂的决策支持场景,包括跨多个表的连接、聚合和分组、子查询等高级SQL技术。
OLAP引擎介绍
ClickHouse、Doris、Presto和ByConity都是当前比较流行的开源OLAP引擎,它们都具有高性能和可扩展性的特点。
ClickHouse是由俄罗斯搜索引擎公司Yandex开发的一个列式数据库管理系统,它专注于大规模数据的快速查询和分析。
Doris是一个分布式列式存储和分析系统,它支持实时查询和分析,并可以与Hadoop、Spark和Flink等大数据技术进行集成。
Presto是一个分布式SQL查询引擎,它由Facebook开发,可以在大规模数据集上进行快速查询和分析。
ByConity是由字节开源的云原生数仓,采用了存储计算分离的架构,实现租户资源隔离、弹性扩缩容,并具有数据读写的强一致性等特性,它支持主流的OLAP引擎优化技术,读写性能非常优异。
本文将使用这四个OLAP引擎对TPC-DS基准测试的99个查询语句进行性能测试,并对比它们在不同类型的查询中的性能差异。
测试环境和方法
测试环境配置:
服务器配置:
测试方法:
使用TPC-DS基准测试的99个查询语句,和1TB(28亿行)的数据测试4个OLAP引擎的性能。
在每个引擎中使用相同的测试数据集,并保持相同的配置和硬件环境。
对于每个查询,多次执行并取平均值,以减少测量误差,设置每次查询超时时间为500秒。
记录查询执行的细节,例如查询执行计划、I/O和CPU使用情况等。
性能测试结果
我们使用了相同的数据集和硬件环境来测试这四个OLAP引擎的性能。测试数据集大小为1TB,硬件和软件环境如上介绍,我们使用了TPC-DS基准测试中的99个查询语句分别在四个OLAP引擎上进行了连续三次的测试,并取三次平均结果。其中ByConity跑通了所有99个查询测试。Doris在SQL15出现Crash,另外有4次的Timeout,分别是SQL54、SQL67、SQL78和SQL95。Presto只在SQL67和SQL72发生Timeout,其他查询测试都跑通了。而Clickhouse只跑通了50%的查询语句,大概有一部分是Timeout,另一部分是系统报错,分析原因是Clickhouse不能有效的支持多表关联查询导致,只能把这类SQL语句做手动改写拆分才能执行。因此在对比总耗时我们暂时排除Clickhouse,其他三个OLAP引擎TPC-DS测试总耗时如下图1所示,从图1 中我们可以看出开源的ByConity查询性能明显优于其他引擎,性能约是其他的3-4倍。(注:以下所有图表纵坐标单位为秒)
图1 TPC-DS 99条查询总耗时
针对TPC-DS基准测试的99个查询语句,我们接下来按照查询场景的不同进行分类,例如基础查询、连接查询、聚合查询、子查询、窗口函数查询等。下面我们将使用这些分类方式来对ClickHouse、Doris、Presto和ByConity四个OLAP引擎进行性能分析对比:
基础查询场景下
该场景包含简单的查询操作,例如从单个表中查询数据,过滤和排序结果等。基础查询的性能测试主要关注处理单个查询的能力。其中ByConity的表现最佳,Presto和Doris的性能也表现都不错,这是因为基础查询通常只涉及到少量的数据表和字段,因此能够充分利用Presto和Doris的分布式查询特性和内存计算能力,Clickhouse对多表关联支持不好,出现一些跑不通的现象,其中SQL5、8、11、13、14、17、18均超时,我们按Timeout=500秒计算,但希望显示更清晰截取Timeout=350秒。下图2 是基础查询场景下四个引擎的平均查询时间:
图2 TPC-DS 基础查询的性能对比
连接查询场景
连接查询是常见的多表查询场景,它通常使用JOIN语句连接多个表,并根据指定条件进行数据检索。如图3 我们看到ByConity的性能最佳,主要得益于对查询优化器的优化,引入了基于代价的优化能力(CBO),在多表Join时候进行re-order的等优化操作。其次是Presto和Doris,Clickhouse在多表Join的效果相比其他三个性能不是很好,且对很多复杂语句的支持不够好。
图3 TPC-DS连接查询的性能对比
聚合查询场景
聚合查询是对数据进行统计计算的场景,例如测试SUM、AVG、COUNT等聚合函数的使用。ByConity依然表现优异,其次是Doris和Presto,Clickhouse出现了四次Timeout,为了方便看出差异,我们截取Timeout值到250秒。
图4 TPC-DS聚合查询的性能对比
子查询场景
子查询是在SQL语句中嵌套使用的查询场景,它通常作为主查询的条件或限制条件。如下图5所示,ByConity表现最佳,原因是ByConity实现了基于规则的优化能力(RBO)进行查询优化,通过算子下推、列裁剪和分区裁剪等技术,把复杂的嵌套查询进行整体优化,替除所有的子查询,把常见算子转化成Join+Agg的形式。其次是Doris和Presto表现相对较好,但Presto在SQL68和SQL73出现Timeout,Doris也在3个SQL查询出现Timeout,Clickhouse同样出现了部分超时和系统报错,原因上面有提到。同样为方便看出差异,我们截取Timeout值等于250秒。
图5 TPC-DS子查询的性能对比
窗口函数查询场景
窗口函数查询是一种高级的SQL查询场景,它可以在查询结果中进行排名、分组、排序等操作。如下图6所示,ByConity的性能最优,其次是Presto,Doris出现了一次Timeout的情况,Clickhouse依然有部分没有跑通TPC-DS测试。
图6 TPC-DS窗口函数查询的性能对比
总结
本文对ClickHouse、Doris、Presto和ByConity四个OLAP引擎在TPC-DS基准测试的99个查询语句下的性能进行了分析和比较。我们发现,在不同的查询场景下,四个引擎的性能表现存在差异。ByConity在所有TPC-DS的99个查询场景下都表现优异,超过其他三个OLAP引擎;Presto和Doris在连接查询、聚合查询和窗口函数查询场景下表现较好;由于Clickhouse的设计和实现并不是专门针对关联查询进行优化,因此在多表关联查询方面整体表现差强人意。
需要注意的是,性能测试结果取决于多个因素,包括数据结构、查询类型、数据模型等。在实际应用中,需要综合考虑各种因素,以选择最适合自己的OLAP引擎。
在选择OLAP引擎时,还需要考虑其他因素,如可扩展性、易用性、稳定性等。在实际应用中,需要根据具体业务需求进行选择,并对引擎进行合理的配置和优化,以获得最佳的性能表现。
总之,ClickHouse、Doris、Presto、ByConity都是非常优秀的OLAP引擎,具有不同的优点和适用场景。在实际应用中,需要根据具体业务需求进行选择,并进行合理的配置和优化,以获得最佳的性能表现。同时,需要注意选择具有代表性的查询场景和数据集,并针对不同的查询场景进行测试和分析,以便更全面地评估引擎的性能。
加入我们
ByConity社区拥有大量的用户,同时是一个非常开放的社区,我们邀请大家和我们一起讨论共建,在Github上建立了issue:https://github.com/ByConity/ByConity/issues/26,也可以加入我们的飞书群、Slack或者Discord参与交流。
声明:以上内容为本网站转自其它媒体,相关信息仅为传递更多企业信息之目的,不代表本网观点,亦不代表本网站赞同其观点或证实其内容的真实性。投资有风险,需谨慎。
9月6日上午,在崂山区政府西塔楼一楼大厅,崂山区科创委联合沙子口街道、大石社区启动了为期5天的大石村农民水彩画展。本次画
2021-09-08 12:23在5米高空作业,将数吨重的火车车轮或者小到几十斤的ldquo;铁疙瘩rdquo;安全装卸到位,可能谁也不会把这一切和一个
2021-09-03 11:10每个孩子都有其独特的成长规律。在孩子成长的过程中,每一步都充满着对这个世界的好奇,那作为家长的我们,该如何顺应孩子的成长
2021-08-30 18:502021年7月19日,备受关注的2021第五届中国家居品牌大会在广州启幕,现场发布2020-2021中国家居十大优选品牌
2021-07-26 01:28